Refine Your Search

Topic

Author

Search Results

Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
Technical Paper

Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach

2022-03-29
2022-01-0760
In a passenger car, suspension link bushings, engine and transmission mount bushings and bump-stops are made of elastomeric materials, to maximize the durability and comfort. Thus, deformation behavior of rubber and its durability is important for product design and development. In virtual engineering, simulating rubber fatigue is a complex exercise, since it needs right modeling strategy and coupon based testing material data. Principal stretches based Ogden model is used to characterize the hyper elastic deformation behavior of natural rubber. Fatigue crack growth approach used here for the fatigue analysis. Engine torque strut mount is used to control the engine and transmission fore aft motion and it is connected between body and Powertrain (PT) system. Powertrain events are predominant for damage contribution to mount failure. So, it is important to predict fatigue life of mount elastomer bushing under Powertrain loading.
Technical Paper

3D FEA Thermal Modeling with Experimentally Measured Loss Gradient of Large Format Ultra-Fast Charging Battery Module Used for EVs

2022-03-29
2022-01-0711
A large amount of heat is generated in electric vehicle battery packs during high rate charging, resulting in the need for effective cooling methods. In this paper, a prototype liquid cooled large format Lithium-ion battery module is modeled and tested. Experiments are conducted on the module, which includes 31Ah NMC/Graphite pouch battery cells sandwiched by a foam thermal pad and heat sinks on both sides. The module is instrumented with twenty T-type thermocouples to measure thermal characteristics including the cell and foam surface temperature, heat flux distribution, and the heat generation from batteries under up to 5C rate ultra-fast charging. Constant power loss tests are also performed in which battery loss can be directly measured.
Technical Paper

Nonlinear, Concave, Constrained Optimization in Six-Dimensional Space for Hybrid-Electric Powertrains

2023-04-11
2023-01-0550
One of the building blocks of the Stellantis hybrid powertrain embedded control software computes the maximum and minimum values of objective functions, such as output torque, as a function of engine torque, hybrid motor torque and other variables. To test such embedded software, an offline reference function was created. The reference function calculates the ideal minimum and maximum values to be compared with the output of the embedded software. This article presents the offline reference function with an emphasis on mathematical novelties. The reference function computes the minimum and maximum points of a linear objective function as a function of six independent variables, subject to 42 linear and two nonlinear constraints. Concave domains, curved surfaces, disjoint domains and multiple local extremum points challenge the algorithm. As a theorem, the conditions and methods for running trigonometric calculations in 6D Euclidean space are presented.
Technical Paper

Architecture & Design of Common Hybrid Torque Controls within a Powertrain Domain Controller

2023-04-11
2023-01-0549
The proliferation and increased complexity of electrified powertrains presents a challenge to the associated controls development. This paper outlines the strategy of common supervisory and domain torque management for such powertrains. The strategy covers the multitude of powertrain architectures that exist in the market today while maintaining the fundamental pillars of physics-based torque controls, state-of-the-art optimization methodologies, and common-core hybrid system constraints. The electrified powertrain torque controls that Stellantis LLC. uses include key constituents such as optimization of powertrain state that relate to optimum engine speed and transmission gear, optimization of engine and motor torques, engine start-stop management, and hybrid shift execution which manages powertrain state transitions by interacting with various external transmission systems. The common backbone of these constituents are the dynamic/kinematic equations of the powertrain.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

Lumped Parameter Based Thermo-Physical Modeling of Electrified Vehicle Transmission System

2018-04-03
2018-01-1195
More stringent Federal emission regulations and fuel economy requirements have driven the automotive industry toward more efficient vehicle thermal management systems to best utilize the heat produced from burning fuel and improve driveline efficiency. The greatest part of the effort is directed toward the hybridization of automotive transmission systems. The efficiency and durability of hybrid powertrain depends on the heat generation in electric motors and their interactions among each other, ambient condition, the cooling system and the transmission component configuration. These increase the complexity of motor temperature prediction as well as the computational cost of running a conjugate heat-transfer based CFD analysis. In this paper, 1D physics based thermal model is developed which allows rapid and accurate component-wise temperature estimation of the electric motor during both steady-state and transient driving cycles.
Technical Paper

Automatic Calibrations Generation for Powertrain Controllers Using MapleSim

2018-04-03
2018-01-1458
Modern powertrains are highly complex systems whose development requires careful tuning of hundreds of parameters, called calibrations. These calibrations determine essential vehicle attributes such as performance, dynamics, fuel consumption, emissions, noise, vibrations, harshness, etc. This paper presents a methodology for automatic generation of calibrations for a powertrain-abstraction software module within the powertrain software of hybrid electric vehicles. This module hides the underlying powertrain architecture from the remaining powertrain software. The module encodes the powertrain’s torque-speed equations as calibrations. The methodology commences with modeling the powertrain in MapleSim, a multi-domain modeling and simulation tool. Then, the underlying mathematical representation of the modeled powertrain is generated from the MapleSim model using Maple, MapleSim’s symbolic engine.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

Efficiency Evaluation of Lower Viscosity ATF in a Planetary Automatic Transmission for Improved Fuel Economy

2019-04-02
2019-01-1296
With continued industry focus on reducing parasitic transmission and driveline losses, detailed studies are required to quantify potential enablers to improve vehicle fuel economy. Investigations were undertaken to understand the influence of lower viscosity Automatic Transmission Fluids (ATF) on transmission efficiency as compared with conventional fluids. The objectives of this study were to quantify the losses of lower viscosity ATF as compared with conventional ATF, and to understand the influence of ATF properties including viscosities, base oil types, and additive packages on fuel efficiency. The transmission efficiency investigations were conducted on a test bench following a vehicle-based break-in of the transmission using a prescribed drive cycle on a chassis dynamometer. At low temperature, the lower viscosity ATF showed a clear advantage over the conventional ATF in both spin loss and loaded efficiency evaluations.
Technical Paper

Optimization of Vehicle Air Intake System and Air Charge Temperature for Better Engine Performance and Fuel Economy

2016-04-05
2016-01-0206
An Air intake system (AIS) is a duct system which leads the airflow going into the internal combustion engine. Combustion requires oxygen, and the more oxygen is provided into the combustion process the more power it will produce. The lower the air temperature, the higher its density, and hence there is more oxygen in a unit volume. The quality of air entering engine can be measured with the air temperature. AIS design and routing influence the air charge temperature (ACT) at intake manifold runners and ACT is normally measured at AIS throttle body in reality. Higher ACT lead to inefficient combustion and can lead to spark retard. Optimization of AIS designs and reduction of ACT can improve engine performance and vehicle fuel economy. High ACT can be a result of two different phenomena: Recirculation - Hot air from the underhood environment ingested into the dirty side of the air intake system.
Technical Paper

Integrated Engine Performance and Valvetrain Dynamics Simulation

2016-04-05
2016-01-0483
Valvetrain dynamics modeling and engine combustion modeling are often carried out independently. As a result, the interaction between these two physical responses may not be accurately assessed. The objective of this work is to understand the impact that robust valve timing simulations, implemented using a fully coupled valve train dynamics and engine performance model, have on engine performance prediction. The integrated simulation and detailed technical approach are discussed through the presentation of an example implementation. An I4 engine model is developed in which engine performance and valvetrain dynamics modeling are coupled. A benefit of this multi-physics approach is that it reduces reliance on empirically derived estimates of valve lash in favor of physical modeling of engine valvetrain dynamics that predicts lash during engine performance modeling.
Technical Paper

Evaluating Major Parasitic Power Losses in IC Engines

2016-04-05
2016-01-0489
The mathematical models that predict friction losses for an internal combustion (IC) engine are described in this paper. These models are based on a combination of fundamental physics and empirical results. These include predictions of losses arising from friction and viscous fluid motion associated with the relative movement of solid surfaces within a piston assembly, the cranktrain, and valvetrain components. The engine friction losses are defined in the context of the geometries of the particular components within an IC engine. Details of these formulations are given, including novel geometry-related coefficients. Different regimes of lubricated friction are considered. In order to establish the model fidelity and robust solution methodology, the mathematical models are validated against engine friction tests. Utilization of these models enables practical solutions to the development of new low friction IC engines that leads to improved engine mechanical efficiency and fuel economy.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Optimum Engine Power Point Determination Method to Maximize Fuel Economy in Hybrid Vehicles

2021-04-06
2021-01-0419
One of the advantages of hybrid vehicles is the ability to operate the engine more optimally at a low brake specific fuel consumption (BSFC) as compared to conventional vehicles. This ability of hybrid vehicles is a major factor contributing to the fuel economy improvement over conventional vehicles. Unlike conventional gasoline powertrains, hybrid powertrains allow engine to be switched off and use battery power to propel vehicles. In order to maintain battery state of charge neutral operation between the start and end of a drive cycle, the net electrical energy consumption from the battery requires to be zero. An optimization algorithm can be developed and calibrated in different ways to achieve net zero battery energy over the cycle. For instance, the engine can be operated at powers higher than the power of the drive cycle to charge the battery. This accumulated energy can be used for all-electric propulsion by turning off the engine.
Technical Paper

Experimental Investigation on the Effects of Design and Control Factors on the Performance and Emissions Characteristics of a Boosted GDI Engine Using Taguchi Method

2021-04-06
2021-01-0466
Mixture formation and combustion dynamics are the primary contributors to the performance and emission characteristics of direct-injected spark ignition (SI) engines. This requires assessing the benefits and tradeoffs of the design and control factors that influence mixing and the subsequent combustion event. In this study, Taguchi's L18 orthogonal array design of experiment (DoE) methodology has been applied to assess contributions and tradeoffs of varied compression ratio, piston bowl design, intake port tumble design, injector spray pattern, injection timing, injection pressure, exhaust gas recirculation (EGR) rate, and intake valve closing timing in a single-cylinder boosted gasoline direct injection (GDI) SI engine. This multiparameter study has been carried out across three speed-load conditions representative of typical automotive application operating ranges.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Technical Paper

Powertrain Metric to Assess Engine Stop Start Refinement

2015-06-15
2015-01-2186
Every automaker is looking for ways to improve the fuel economy of its vehicle fleet to meet the EPA greenhouse gas regulation, which translates into 2025 Corporate Averaged Fuel Economy of 54.5 mpg. Engine Stop Start technology will improve the fuel economy of the vehicle by shutting down the engine when the vehicle is stationary. While this is an established technology in Europe, it is beginning to gain momentum in North America, where NVH refinement is a stronger consideration. To utilize the fuel economy benefits of Stop Start technology in the North American market, the technology must be seamlessly incorporated into the vehicle. This paper gives an overview of characterizing an auto start based on the features of a few Powertrain-system-level metrics. Following the fundamentals of NVH, (Source, Path and Receiver) the receiver touch points will be less perceptible to vibration, if the powertrain-system source is made smoother.
X